

Object-Oriented Programming (OOPS-3)

What you will learn in this lecture?

● Important keywords and their use.

● Abstraction.

● Interfaces.

Final Keyword

● When a variable is declared with a final keyword, its value can’t be modified,

essentially, a constant. This also means that you must initialize a final

variable.

● If the final variable is a reference, this means that the variable cannot be

re-bound to reference another object, but the internal state of the object

pointed by that reference variable can be changed i.e. you can add or

remove elements from the final array or final list.

● Final keywords can be used to initialise constants.

Initializing a final variable:

Example:

1

final ​int ​{name_of_variable}​ = ​{value}​;

final ​int ​pi​ = ​3.14​;

Refer to the course videos to see the use case and more about the final keyword.

Abstract Classes
An abstract class can be considered as a blueprint for other classes. Abstract

classes are classes that contain one or more abstract methods. An abstract method

is a method that has a declaration but does not have an implementation. This set of

methods must be created within any child classes which inherit from the abstract

class. ​A class that contains one or more abstract methods is called an ​abstract class​.

Creating Abstract Classes in Java

● By default, Java does not provide abstract classes.

● A method becomes abstract when decorated with the keyword ​abstract​.

● An abstract class cannot be directly instantiated i.e. we cannot create an

object of the abstract class.

● However, the subclasses of an abstract class that have definitions for all the

abstract methods declared in the abstract class, can be instantiated.

● While declaring abstract methods in the class, it is not mandatory to use the

abstract​ decorator (i.e it would not throw an exception). However, it is

considered a good practice to use it as it notifies the compiler that the user

has defined an abstract method.

The given Java code uses the ​ABC​ class and defines an abstract base class:

2

 ​abstract class​ ABC{
 ​ ​int value;
 ​Abstract int​ ​do_something​(){ ​//Our abstract method declaration
 // ​TO_DO
 }

}

We will do it in the following example, in which we define two classes inheriting

from our abstract class:

We get the output as:

Thus, we can observe that a class that is derived from an abstract class cannot be

instantiated unless all of its abstract methods are overridden.

Note: ​Concrete classes contain only concrete (normal) methods whereas abstract

classes may contain both concrete methods and abstract methods.

● An abstract method can have an implementation in the abstract class.

3

class​ ​add​ extends ABC{
 ​int ​do_something​(){
 ​return​ value + ​42;
 }

}

class​ ​mul​ extends ABC{
 ​int ​do_something​(){
 ​return​ value * ​42;
 }

}

class​ ​Test​{
 ​public static void​ main(String[] args)​ {
 add x = new add(​10​);
 mul y = new mul(​10​);

 System.out.println(x.do_something());

 System.out.println(y.do_something());

 }

}

52

420

● However, even if they are implemented, this implementation shall be

overridden in the subclasses.

● If you wish to invoke the method definition from the abstract superclass, the

abstract method can be invoked with ​super()​ call mechanism. (​Similar to

cases of “normal” inheritance​).

● Similarly, we can even have concrete methods in the abstract class that can

be invoked using ​super()​ call. Since these methods are not abstract it is not

necessary to provide their implementation in the subclasses.

● Consider the given example:

4

abstract class​ ABC{

 abstract ​int ​do_something​(){ ​//Abstract Method
 System.out.println(​"Abstract Class AbstractMethod"​);
 }

 ​int​ ​do_something2​(){ ​//Concrete Method
 System.out.println(​"Abstract Class ConcreteMethod"​);
 }

}

class​ ​AnotherSubclass​ extends ABC{
 ​int​ ​do_something​(){
 ​//Invoking the Abstract method from super class
 super().do_something();

 }

 ​//No concrete method implementation in subclass
}

class​ ​Test​{
 ​public static void​ main(String[] args)​ {
 AnotherSubclass x = new AnotherSubclass()

 x.do_something() ​//calling abstract method
 x.do_something2() ​//Calling concrete method

We will get the output as:

Another Example
The given code shows another implementation of an abstract class.

5

 }

}

Abstract Class AbstractMethod

Abstract Class ConcreteMethod

// Java program showing how an abstract class works

abstract ​class​ ​Animal​{ ​//Abstract Class
 abstract ​move​();
}

class​ ​Human​ extends Animal{ ​//Subclass 1
 ​void​ ​move​(){
 System.out.println(​"I can walk and run"​);
 }

}

class​ ​Snake​ extends Animal{ ​//Subclass 2
 ​void​ ​move​(){
 System.out.println(​"I can crawl"​)
}

class​ ​Dog​ extends Animal{ ​//Subclass 3
 ​void​ ​move​(){
 System.out.println(​"I can bark"​)
 }

}

// Driver code

We will get the output as:

Interfaces

An interface is a reference type in Java. It is similar to class. It is a collection of

abstract methods. A class implements an interface, thereby inheriting the abstract

methods of the interface.

Writing an interface is similar to writing a class. But a class describes the attributes

and behaviors of an object. And an interface contains behaviors that a class

implements.

An interface is different from a class in several ways:

● You cannot instantiate an interface.

● An interface does not contain any constructors.

● All of the methods in an interface are abstract.

● An interface cannot contain instance fields. The only fields that can appear in an

interface must be declared both static and final.

6

class​ ​Test​{
 ​public static void​ main(String[] args)​ {
 Animal R = new Human();

 R.move();

 Animal K = Snake();

 K.move();

 R = Dog();

 R.move();

 }

}

I can walk and run

I can crawl

I can bark

● An interface is not extended by a class; it is implemented by a class.

● An interface can extend multiple interfaces.

Declaring Interface

Example:

Now we need to implement this interface using a different class. A class uses the

implements keyword to implement an interface. The ​implements ​keyword appears

in the class declaration following the extends portion of the declaration.

7

public ​interface ​Name_of_interface ​{
// body

}

public ​interface ​VehicleInterface ​{

public final static double PI = 3.14;

public int ​getMaxSpeed​();
public void ​print​();

}

public ​class ​Vehicle ​implements ​CarInterface​{

@Override

public ​void ​print​() {
// TODO Auto-generated method stub

// We can implement this function further.

}

@Override

public ​int ​getMaxSpeed​() {

@​Override​ annotation informs the compiler that the element is meant to ​override

an element declared in an interface.

We can implement the given overridden functions and instantiate an object of

Vehicle class.

8

// TODO Auto-generated method stub

return ​0;
}

@Override

public ​String ​getCompany​() {
// TODO Auto-generated method stub

return ​null;
}

}

