

Java Foundation with Data Structures

Lecture 5 : Functions, Variables and Scope

s​Functions

 ​A Function is a collection of statements designed to perform a specific task.
Function is like a black box that can take certain input(s) as its parameters and
can output a value which is the return value. A function is created so that one
can use it as many time as needed just by using the name of the function, you
do not need to type the statements in the function every time required.

Defining Function

return_type​ function_name​(​parameter 1, parameter 2, ………​) {

statements​;

}

● return type:​ ​A function may return a value. The ​return type​ of the
function is the data type of the value that function returns. Sometimes
function is not required to return any value and still performs the
desired task. The return type of such functions is ​void​.

Example:

Following is the example of a function that sum of two numbers. Here input to
the function are the numbers and output is their sum.

1. public​ ​static​ ​int​ findSum​(​int ​a​, ​int ​b​){
2. int ​sum ​= ​a ​+ ​b​;
3. return ​ ​sum​;
4. }

Function Calling

Now that we have read about how to create a function lets see how to call the
function. To call the function you need to know the name of the function and
number of parameters required and their data types and to collect the
returned value by the function you need to know the return type of the
function.

Example

1. public​ ​static​ ​int​ findSum​(​int ​a​, ​int ​b​){
2. ​int​ sum ​= ​a ​+ ​b​;
3. ​return ​ ​sum​;
4. }
5. public​ ​static​ ​void​ main​ () {
6. ​int ​a ​= ​10, b ​= ​20​;
7. ​int ​c​= ​findSum​ (​a​, ​b​); // function findSum () is called using its name and

by knowing
8. System.​out​.print(​c​);​//​ the number of parameters and their data type.
9. } // ​integer c is used to collect the returned value by

the function

Output:
30

IMPORTANT POINTS:
● Number of parameter​ ​and their​ ​data type​ ​while calling must match with

function signature. Consider the above example, while calling function
findSum ()​ ​the number of parameters are two and both the parameter
are of integer type.

● It is okay not to collect the return value of function. For example, in the

above code to find the sum of two numbers it is right to print the return
value directly.

“System.​out​.print(​c​);”

● void return type functions: ​These are the functions that do not return
any value to calling function. These functions are created and used to
perform specific task just like the normal function except they do not
return a value after function executes.

Following are some more examples of functions and their use to give you a
better idea.

Function to find area of circle

1. public​ ​static​ ​double​ findArea(​double​ ​radius​){
2. double ​area​ =​ ​radius​*​radius​*3.14; ​//return type is double
3. ​return ​area​;
4. }
5.
6. public​ ​static​ ​void​ main(String[] ​args​) {
7. double​ ​radius​ = 5.8;
8. ​double​ ​c​ = ​findArea​(​radius​);
9. System.​out​.print(​c​);
10.}
11.

Function to print average

1. public​ ​static​ ​void​ printAverage​(int a, int b){ //​return type of the
function is void

12. ​int​ avg = (a + b) / 2;
13. System.​out​.print(​avg​);
2. } // ​This function does not return any value
3.
4. public​ ​static​ ​void​ main​ () {
5. ​int​ a = 15, b = 25;
6. printAverage​ (​a, b​);
7. }

Why do we need function?

● Reusability: ​Once a function is defined, it can be used over and over
again. You can call the function as many time as it is needed, which saves
work. Consider that you are required to find out the area of the circle,
now either you can apply the formula every time to get the area of circle
or you can make a function for finding area of the circle and invoke the
function whenever it is needed.

● Neat code: ​A code created with function is easy to read and dry run. You
don’t need to type the same statements over and over again, instead
you can invoke the function whenever needed.

● Modularisation ​– ​Functions help in modularising code. Modularisation

means to divides the code in small modules each performing specific
task. Functions helps in doing so as they are the small fragments of the
programme designed to perform the specified task.

● Easy Debugging:​ It is easy to find and correct the error in function as
compared to raw code without function where you must correct the
error (if there is any) everywhere the specific task of the function is
performed.

How does function calling works?

Consider the following code where there is a function called findsum which
calculates and returns sum of two numbers.

//Find Sum of two integer numbers

1. public​ ​static​ ​int​ findSum​(​int ​a​, ​int ​b​){
2. ​int​ sum ​= ​a ​+ ​b​;
3. ​return ​ ​sum​;
4. }
5. public​ ​static​ ​void​ main​ () {
6. ​int ​a ​= ​10, b ​= ​20​;
7. ​int ​c​= ​findSum​ (​a​, ​b​);
8. System.​out​.print(​c​);
9.

The function being called is called
callee(​here it is findsum function) and the
function which calls the callee is called

the​ caller ​(here main function is the caller) .
When a function is called, programme control goes to the entry point of the
function. Entry point is where the function is defined. So focus now shifts to
callee and the caller function goes in paused state .

For Example: In above code entry point of the function ​findSum ()​ ​is at line
number 3. So when at line number 9 the function call occurs the control goes
to line number 3, then after the statements in the function ​findSum ()​ are
executed the programme control comes back to line number 9.

 ​Role of stack in function calling (call stack)

​A call stack is a storage area
that store information about
the ​active function and
paused functions. It stores
parameters of the function,
return address of the
function and variables of the
function that are created
statically.

Once the function
statements are terminated
or the function has returned
a value, the call stack
removes all the information about that function from the stack.

Benefits of functions

● Modularisation
● Easy Debugging:​ It is easy to find and correct the error in function as

compared to raw code without function where you must correct the
error (if there is any) everywhere the specific task of the function is
performed.

● ​Neat code: ​A code created with function is easy to read and dry run.

Variables and Scopes

Local Variables

Local variable is a variable that is given a local scope. Local variable belonging
to a function or a block has its scope only within the function or block inside
which it is declared. Scope of a variable is part of a programme for which this
variable is accessible.

Example:

1. #include<iostream>
2. using namespace ​std​;
3. public​ ​static​ ​void​ ​main​(){
4. ​int ​a ​= ​10​;
5. ​System.​out​.print(​a​);
6.
7. }

Output
5
In the above code the variable ​a​ declared inside the block after if statement is
a local variable for this block.

Lifetime of a Variable

The lifetime of a variable is the time period for which the declared variable has
a valid memory. Scope and lifetime of a variable are two different concepts,
scope of a variable is part of a programme for which this variable is accessible
whereas lifetime is duration for which this variable has a valid memory.

Loop variable

Loop variable is a variable which defines the loop index for each iteration.

Example

“for ​(​int ​i​ ​= ​0; i ​< ​3; i​++) { // variable ​i ​is the loop variable
 …….;
 ……..;
 statements;
 ​} ​“
For this example, variable ​i ​is the loop variable.

Variables in the same scope
Scope is part of programme where the declared variable is accessible. In the
same scope, no two variables can have name. However, it is possible for two
variables to have same name if they are declared in different scope.

Example:

1. public​ ​static​ ​void​ main(String[] ​args​) {
2. int​ ​a​ = 10;
3. double​ ​a​ = 5;​ // two variables with same name, the code will not

compile
4. System.​out​.println(​a​);
5. }

For the above code, there are two variables with same name ​a​ in the same
scope of main () function. Hence the above code will not compile.

Pass by value:

When the parameters are passed to a function by pass by value method, then
the formal parameters are allocated to a new memory. These parameters have
same value as that of actual parameters. Since the formal parameters are
allocated to new memory any changes in these parameters will not reflect to
actual parameters.

Example:
 ​//Function to increase the parameters value

1. public​ ​static​ ​void​ increase(​int​ ​x​, ​int​ ​y​){
2. x​++;
3. y​ = ​y​ + 2;
4. System.​out​.println(​x​ + ​":"​ + ​y​); ​/​/ x and y are formal

parameters
5. }
6. public​ ​static​ ​void​ main(String[] ​args​) {
7. int​ ​a​ = 10;
8. int​ ​b​ = 20;
9. increase​(​a​,​b​);
10. System.​out​.println(​a​ + ​":"​ + ​b​); ​ // a and b are actual

parameters
11.
12.}

Output:
11: 22
10: 20

For the above code, changes in the values of ​x ​and​ y ​are not reflected to ​a ​and
b​ because x and y are formal parameters and are local to function increment so
any changes in their values here won’t affect variables a and b inside main.

