

Java Foundation with Data Structures

Lecture 4 : Loops, Keywords, Associativity and Precedence

for loop

Loop statements allows us to execute a block of statements several number of
times depending on certain condition. ​for ​loop is kind of loop in which we give
initialization statement, test expression and update statement can be written in
one line.

Inside for, three statements are written –
a. Initialization – used to initialize your loop control variables. This statement is
executed first and only once.
b. Test condition – this condition is checked everytime we enter the loop.
Statements inside the loop are executed till this condition evaluates to true. As
soon as condition evaluates to false, loop terminates and then first statement
after for loop will be executed next.
c. Updation – this statement updates the loop control variable after every
execution of statements inside loop. After updation, again test conditon is
checked. If that comes true, the loop executes and process repeats. And if
condition is false, the loop terminates.

for​ (​initializationStatement​; test_expression; ​updateStatement​) {

// Statements to be executed till test_expression is true
}

Example Code :

 public​ ​static​ ​void​ main(String[] args) {
 ​for​(​int​ i = 0; i < 3; i++) {

 System.​out​.print(​"Inside for loop : "​);
 System.​out​.println(i);

 }
 System.​out​.println(​"Done"​);

 }

Output:
Inside for Loop : 0
Inside for Loop : 1
Inside for Loop : 2
Done

In for loop its not compulsory to write all three statements i.e.
initializationStatement, ​test_expression and ​updateStatement. We can skip one
or more of them (even all three)

Above code can be written as:
 public​ ​static​ ​void​ main(String[] args) {

 int i = 1; //initialization is done outside the for loop
 ​for​(; i < =5; i++) {

 System.​out​.println(i);
 }

 }

OR
 public​ ​static​ ​void​ main(String[] args) {

 int i = 1; //initialization is done outside the for loop
 ​for​(; i < =5;) {

 System.​out​.println(i);
 i++; // update Statement written here

 }
 }

We can also skip the test_expression. See the example below :

Variations of for loop

● The three expressions inside for loop are optional. That means, they can be
omitted as per requirement.

Example code 1: ​Initialization part removed –

 public​ ​static​ ​void​ main(String[] args) {

 ​int​ i = 0;
 ​for​(; i < 3; i++) {

 System.​out​.println(i);

 }
 }

Output:
0
1
2

Example code 2: ​Updation part removed

 public​ ​static​ ​void​ main(String[] args) {

 ​for​(​int​ i = 0; i < 3;) {
 System.​out​.println(i);
 i++;

 }
 }

Output:
0
1
2

Example code 3: ​Condition expression removed , thus making our loop infinite –

 public​ ​static​ ​void​ main(String[] args) {

 ​for​(​int​ i = 0; ; i++) {
 System.​out​.println(i);

 }
 }

Example code 4:
We can remove all the three expression, thus forming an infinite loop-

 public​ ​static​ ​void​ main(String[] args) {

 ​for​(; ;) {
 System.​out​.print(​"Inside for loop"​);

 }
 }

● Multiple statements inside for loop

We can initialize multiple variables, have multiple conditions and multiple update

statements inside a ​for loop​. We can separate multiple statements using
comma, but not for conditions. They need to be combined using logical
operators.

Example code:

 public​ ​static​ ​void​ main(String[] args) {
 ​for​(​int​ i = 0, j = 4; i < 5 && j >= 0; i++, j--) {

 System.​out​.println(i + ​" "​ + j);
 }

 }

Output:

 0 4
 1 3
 2 2
 3 1
 4 0

break and​ ​continue

1. break statement​: ​The break statement terminates the loop (for, while and
do. while loop) immediately when it is encountered. As soon as break is
encountered inside a loop, the loop terminates immediately. Hence the
statement after loop will be executed next.

2. continue statement: ​The continue statement skips some statements inside
the loop. The continue statement is used with decision making statement
such as if...else. (caution always update the counter in case of while loop
else loop will never end)
while​(test_expression) {

// codes
if (condition for break) {

break​;
}
//codes

}

for​ (​initializationStatement​; test_expression; ​updateStatement​) {

// codes
if (condition for break) {

break​;
}
//codes

}
❖ break

● Example: (using break inside for loop)

 public​ ​static​ ​void​ main(String[] args) {
 ​for​(​int​ i = 1; i < 10; i++) {

 System.​out​.println(i);
 ​if​(i == 5) {

 ​break​;
 }

 }
 }

Output:
1
2
3
4
5

● Example: (using break inside while loop)

public​ ​static​ ​void​ main(String[] args) {

int​ i = 1;
while​ (i <= 10) {

System.​out​.println(i);
if(i==5)
{

break​;
}

i++;
}

}

Output​:

1
2
3
4
5

● Inner loop break:

When there are two more loops inside one another. Break from innermost loop
will just exit that loop.

Example Code 1:

public​ ​static​ ​void​ main(String[] args) {

for (int i=1;​ i <=3; i++) {
System.​out​.println(i);
for (int j=1;​ j<= 5; j++)
{
 System.​out​.println(​“in”​);
 if(j==1)

{
break​;

}
 }

}
}
Output:
1
in…
2
in…
3
in…

Example Code 2:

public​ ​static​ ​void​ main(String[] args) {
int i=1;

while (​i <=3) {
System.​out​.println(i);
int j=1;
while (j​ <= 5)
{

System.​out​.println(​“in”​);
if(j==1)
{

break​;
}
j++;

 }
i++;

}
}

Output:
1
in…
2
in…
3
in…

❖Continue

The ​continue​ keyword can be used in any of the loop control structures. It causes
the loop to immediately jump to the next iteration of the loop.

● Example: (using for loop)

public​ ​static​ ​void​ main(String[] args){
for (int i=1;​ i <= 5; i++) {

if(i==3)
{

continue​;
}

System.​out​.println(i);
}

}

Output:
1
2
4
5

● Example: (using while loop)

public​ ​static​ ​void​ main(String[] args){

int i=1;
while (​i <= 5) {

if(i==3)
{

i++;
 // if increment isn’t done here then loop will run

infinite time for i=3
continue​;

}
System.​out​.println(i);
i++;

}
}

Output​:
1
2
4
5

Scope of variables

Scope of variables is the curly brackets {} inside which they are defined. Outside
which they aren’t known to the compiler. Same is for all loops and conditional
statement (if).

❖Scope of variable - for loop

for​ (​initializationStatement​; test_expression; ​updateStatement​) {
// Scope of variable defined in loop

}

 Example:
public​ ​static​ ​void​ main(String[] args) {

for​ (​int i=0​; i<5; ​i++​) {
int j=2; // Scope of i and j are both inside the loop they can’t be used outside
 }

❖Scope of variable for while loop

while​(test_expression) {

// Scope of variable defined in loop
}

public​ ​static​ ​void​ main(String[] args) {

int i=0;
while(i<5)
{

int j=2; // Scope of i is main and scope of j is only the loop
i++;

}
}

❖ Scope of variable for conditional statements

if​(test_expression) {

// Scope of variable defined in the conditional statement
}

public​ ​static​ ​void​ main(String[] args) {

int i=0;
if (i<5)
{

int j=5; // Scope of j is only in this block
}

// cout<<j; � This statement if written will give an error because

scope of j is inside if and is not accessible outside if.
}

Increment Decrement operator

Explanation

Pre-increment​ and ​pre-decrement​ operators’ increments or decrements the value
of the object and returns a reference to the result.

Post-increment​ and ​post-decrement​ creates a copy of the object, increments or
decrements the value of the object and returns the copy from before the
increment or decrement.

Post-increment(a++):
This increases value by 1, but uses old value of a in any statement.

Pre-increment(++a):
This increases value by 1, and uses increased value of a in any statement.

Post-decrement(a--):
This decreases value by 1, but uses old value of a in any statement.

Pre-decrement(++a):
This decreases value by 1, and uses decreased value of a in any statement.

public​ ​static​ ​void​ main(String[] args) {

int I=1, J=1, K=1, L=1;

cout<<I++<<' '<<J-- <<' '<<++K<<' '<< --L<<endl;

cout<<I<<' '<<J<<' '<<K<<' '<<L<<endl;

}

Output:
1 1 2 0
2 0 2 0

Bitwise Operators

Bitwise operators are used to perform operations at bit level. Following is the
summary of various bitwise operations​:

Operator Name Example Result Description

a​ & ​b and 4 & 6 4 1 if both bits are 1.

a​ | ​b or 4 | 6 6 1 if either bit is 1.

a​ ^ ​b xor 4 ^ 6 2 1 if both bits are different.

~​a not ~4 -5 Inverts the bits. (Unary bitwise compliment)

n​ << ​p
left
shift

3 << 2 12
Shifts the bits of ​n​ left ​p​ positions. Zero bits
are shifted into the low-order positions.

n​ >> ​p
right
shift

5 >> 2 1
Shifts the bits of ​n​ right ​p​ positions. If ​n​ is a
2's complement signed number, the sign bit
is shifted into the high-order positions.

n​ >>> ​p
right
shift

-4 >>> 28 15
Shifts the bits of ​n​ right ​p​ positions. Zeros are
shifted into the high-order positions.

Example Code:

 public​ ​static​ ​void​ main​(​String​ args​[])​ ​{
 ​int​ a ​=​ ​19​; // 19 = 10011
 ​int​ b ​=​ ​28​; // 28 = 11100
 ​int​ c ​=​ ​0​;

 c ​=​ a ​&​ b​;​ // 16 = 10000
 System.​out​.​println​(​"a & b = "​ ​+​ c ​);

 c ​=​ a ​|​ b​;​ // 31 = 11111
 System.​out​.​println​(​"a | b = "​ ​+​ c ​);

 c ​=​ a ​ ​̂ b​;​ // 15 = 01111
 System.​out​.​println​(​"a ^ b = " ​+​ c ​);

 c ​=​ ​~​a​;​ // -20 = 01100
 System.​out​.​println​(​"~a = " ​+​ c ​);

 c ​=​ a ​<<​ ​2​;​ // 76 = 1001100
 System.​out​.​println​(​"a << 2 = " ​+​ c ​);

 c ​=​ a ​>>​ ​2​;​ // 4 = 00100
 System.​out​.​println​(​"a >> 2 = " ​+​ c ​);

 c ​=​ a ​>>>​ ​2​;​ // 4 = 00100
 System.​out​.​println​(​"a >>> 2 = " ​+​ c ​);
 ​}

Output
a & b = 16
a | b = 31
a ^ b = 15
~a = -20
a << 2 = 76
a >> 2 = 4
a >>> 2 = 4

Precedence and Associativity

� Operator precedence determines which operator is performed first in an
expression with more than one operators with different precedence.

For example, 10 + 20 * 30 is calculated as 10 + (20 * 30) and not as (10 + 20) * 30.
� Associativity is used when two operators of same precedence appear in an

expression. Associativity can be either ​L​eft​ t​o ​R​ight or​ R​ight​ t​o ​L​eft. For
example, ‘*’ and ‘/’ have same precedence and their associativity
is ​L​eft​ t​o ​R​ight, so the expression “100 / 10 * 10” is treated as “(100 / 10) *
10”.

Precedence and Associativity are two characteristics of operators that determine
the evaluation order of subexpressions in absence of brackets.
Note : We should generally use add proper brackets in expressions to avoid
confusion and bring clarity.

1) Associativity is only used when there are two or more operators of same
precedence.
The point to note is associativity doesn’t define the order in which operands of a
single operator are evaluated. For example, consider the following program,

associativity of the + operator is left to right, but it doesn’t mean f1() is always
called before f2(). The output of following program is in-fact compiler dependent.
// Associativity is not used in the below program. Output is compiler dependent.
 static int x = 0;
public​ ​static​ ​int​ F1() {
 x = 5;
 return x;
}
public​ ​static int​ F2() {
 x = 10;
 return x;
}
public​ ​static​ ​void​ main(String[] args) {
 int p = F1() + F2();
 System.​out​.println(x);
}

2) All operators with same precedence have same associativity
This is necessary, otherwise there won’t be any way for compiler to decide
evaluation order of expressions which have two operators of same precedence
and different associativity. For example, + and – have same associativity.

3) There is no chaining of comparison operators in Java
Trying to execute the statement a>b>c will give an error and the code will not compile

Following is the Precedence table along with associativity for different operators.

OPERATOR DESCRIPTION ASSOCIATIVITY

()
[]
.
++ —

Parentheses (function call) (see
Note 1)
Brackets (array subscript)
Member selection via object name
Postfix increment/decrement (see
Note 2) left-to-right

++ —
+ –
! ~
(​type​)

Prefix increment/decrement
Unary plus/minus
Logical negation/bitwise
complement right-to-left

 Cast (convert value to temporary
value of ​type​)

* / % Multiplication/division/modulus left-to-right

+ – Addition/subtraction left-to-right

<< >> Bitwise shift left, Bitwise shift right left-to-right

< <=
> >=

Relational less than/less than or
equal to
Relational greater than/greater
than or equal to left-to-right

== != Relational is equal to/is not equal to left-to-right

& Bitwise AND left-to-right

^ Bitwise exclusive OR left-to-right

| Bitwise inclusive OR left-to-right

&& Logical AND left-to-right

| | Logical OR left-to-right

? : Ternary conditional right-to-left

=
+= -=
*= /=
%= &=
^= |=
<<= >>=

Assignment
Addition/subtraction assignment
Multiplication/division assignment
Modulus/bitwise AND assignment
Bitwise exclusive/inclusive OR
assignment
Bitwise shift left/right assignment right-to-left

